FP2 2003 Adapted

1. (i) (a) On the same Argand diagram sketch the loci given by the following equations.

$$
\begin{equation*}
|z-1|=1, \quad,, \arg (z+1)=\frac{\pi}{12}, \quad, \arg (z+1)=\frac{\pi}{2} \tag{4}
\end{equation*}
$$

(b) Shade on your diagram the region for which

$$
\begin{equation*}
|z-1| \leq 1 \quad \text { and } \quad \frac{\pi}{12} \leq \arg (z+1) \leq \frac{\pi}{2} \tag{1}
\end{equation*}
$$

(ii) (a) Show that the transformation $w=\frac{z-1}{z}, z \neq 0$,
maps $|z-1|=1$ in the z-plane onto $|w|=|w-1|$ in the \boldsymbol{w}-plane.
The region $|z-1| \leq 1$ in the z-plane is mapped onto the region T in the w-plane.
(b) Shade the region T on an Argand diagram.
2. (a) Use de Moivre's theorem to show that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

(b) Hence find 3 distinct solutions of the equation $16 x^{5}-20 x^{3}+5 x+1=0$, giving your answers to 3 decimal places where appropriate.
3.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-y^{2}, \quad y=1 \text { at } x=0
$$

(b) By differentiating (I) twice with respect to x, show that

$$
\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}-2=0
$$

(c) Hence, for (I), find the series solution for y in ascending powers of x up to and including the term in x^{3}. (4)
4. (a) Express as a simplified single fraction $\frac{1}{(r-1)^{2}}-\frac{1}{r^{2}}$.
(b) Hence prove, by the method of differences, that $\sum_{r=2}^{n} \frac{2 r-1}{r^{2}(r-1)^{2}}=1-\frac{1}{n^{2}}$.
5. Solve the inequality $\frac{1}{2 x+1}>\frac{x}{3 x-2}$.
6. (a) Using the substitution $t=x^{2}$, or otherwise, find

$$
\begin{equation*}
\int x^{3} \mathrm{e}^{-x^{2}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

(b) Find the general solution of the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=x \mathrm{e}^{-x^{2}}, x>0 \tag{4}
\end{equation*}
$$

7.

Figure 1

A logo is designed which consists of two overlapping closed curves.
The polar equations of these curves are $r=a(3+2 \cos \theta)$ and

$$
r=a(5-2 \cos \theta), \quad 0 \leq \theta<2 \pi .
$$

Figure 1 is a sketch (not to scale) of these two curves.
(a) Write down the polar corrdinates of the points A and B where the curves meet the initial line.(2)
(b) Find the polar coordinates of the points C and D where the two curves meet. (4)
(c) Show that the area of the overlapping region, which is shaded in the figure, is

$$
\begin{equation*}
\frac{a^{2}}{3}(49 \pi-48 \sqrt{ } 3) \tag{8}
\end{equation*}
$$

8.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+9 \boldsymbol{y}=4 \mathrm{e}^{3 \mathrm{t}}, \quad \boldsymbol{t} \geq \mathbf{0} .
$$

(a) Show that $K t^{2} \mathrm{e}^{3 t}$ is a particular integral of the differential equation, where K is a constant to be found. (4)
(b) Find the general solution of the differential equation. (3)

Given that a particular solution satisfies $y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ when $t=0$,
(c) find this solution.(4)

Another particular solution which satisfies $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=0$ when $t=0$, has equation

$$
y=\left(1-3 t+2 t^{2}\right) e^{3 t} .
$$

(d) For this particular solution draw a sketch graph of y against t, showing where the graph crosses the t-axis. Determine also the coordinates of the minimum of the point on the sketch graph.
9. $z=4\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)$, and $\boldsymbol{w}=3\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)$.

Express $z w$ in the form $r(\cos \theta+i \sin \theta), r>0,-\pi<\theta<\pi$.
10. (a) Sketch, on the same axes, the graphs with equation $y=|2 x-3|$, and the line with equation $y=5 x-1$.
(2)
(b) Solve the inequality $|2 x-3|<5 x-1$.
(3)
11. (a) Express $\frac{2}{(r+1)(r+3)}$ in partial fractions. (2)
(b) Hence prove that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)} \equiv \frac{n(5 n+13)}{6(n+2)(n+3)}$.
12. (a) Use the substitution $y=v x$ to transform the equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(4 x+y)(x+y)}{x^{2}}, x>0 \tag{I}
\end{equation*}
$$

into the equation

$$
\begin{equation*}
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=(2+v)^{2} \tag{II}
\end{equation*}
$$

(b) Solve the differential equation II to find v as a function of x
(c) Hence show that $\quad y=-2 x-\frac{x}{\ln x+c}$, where \boldsymbol{c} is an arbitrary constant, is a general solution of the differential equation I.
13. Given that $z=3-3 i$ express, in the form $a+i b$, where a and b are real numbers,
(a) z^{2},
(2)
(b) $\frac{1}{Z}$.
(c) Find the exact value of each of $|z|,\left|z^{2}\right|$ and $\left|\frac{1}{z}\right|$.

The complex numbers z, z^{2} and $\frac{1}{Z}$ are represented by the points A, B and C respectively on an Argand diagram. The real number 1 is represented by the point D, and O is the origin.
(d) Show the points A, B, C and D on an Argand diagram.
(e) Prove that $\triangle O A B$ is similar to $\triangle O C D$.
14. (a) Find the value of λ for which $\lambda x \cos 3 x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+9 y=-12 \sin 3 x \tag{4}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.(4)

The particular solution of the differential equation for which $\boldsymbol{y}=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathbf{2}$ at $\boldsymbol{x}=\mathbf{0}$, is $\boldsymbol{y}=\mathrm{g}(\boldsymbol{x})$.
(c) Find $g(x)$.
(d) Sketch the graph of $y=g(x), 0 \leq x \leq \pi$.
(2)
15.

Figure 1
Figure 1 shows a sketch of the cardioid C with equation $r=a(1+\cos \theta),-\pi<\theta \leq \pi$. Also shown are the tangents to C that are parallel and perpendicular to the initial line. These tangents form a rectangle WXYZ.

(a) Find the area of the finite region, shaded in Fig. 1, bounded by the curve C.
(b) Find the polar coordinates of the points A and B where $W Z$ touches the curve C.
(c) Hence find the length of $W X$.

Given that the length of $W Z$ is $\frac{3 \sqrt{3} a}{2}$,
(d) find the area of the rectangle WXYZ.
(1)

A heart-shape is modelled by the cardioid C, where $a=10 \mathrm{~cm}$. The heart shape is cut from the rectangular card WXYZ, shown in Fig. 1.
(e) Find a numerical value for the area of card wasted in making this heart shape. (2)
8. A transformation T from the z-plane to the w-plane is defined by

$$
w=\frac{z+1}{\mathrm{i} z-1}, \quad z \neq-\mathrm{i}
$$

where $z=x+\mathrm{i} y, w=u+\mathrm{i} v$ and x, y, u and v are real.
T transforms the circle $|z|=1$ in the z-plane onto a straight line L in the w-plane.
(a) Find an equation of L giving your answer in terms of u and v.
(5 marks)
(b) Show that T transforms the line $\operatorname{Im} z=0$ in the z-plane onto a circle C in the w-plane, giving the centre and radius of this circle.
(6 marks)
(c) On a single Argand diagram sketch L and C.
(3 marks)

Question: Solve

$$
x^{5}=-(9 \sqrt{3}) i
$$

